What does the Discovery of Gravitational Waves Mean for Us?

We are just now beginning to detect gravity waves that were recorded for the first time by scientists at the LIGO (Laser Interferometer Gravitational-Wave Observatory) program. Physicists with The LIGO Scientific Collaboration team have concluded that the gravitational waves which were detected were likely produced by the dynamic merger of two black holes.
Gravitational waves in spacetime were also predicted in Einstein’s Theory of Relativity that gave us a new understanding of gravity as a force that could “warp” spacetime. His theory further predicted that all interactions between bodies moving through spacetime cause energy to be dispersed in gravitational waves which are being seen today.
The gravitational waves do not interact with matter but move ‘through’ matter causing a ‘distortion’ of the spacetime in which it is embedded. For years, these ripples in spacetime remained a theoretical construct, widely debated by scientists, because they are extremely difficult to detect with our equipment. For example, the ‘distortion’ created by the gravitational waves resulting from a collision of two black holes ten times larger than our sun would be much less than the width of a proton by the time the ripples first reached earth billions of years later. The waves that were recorded by the LIGO program are considered to be from the merging of two black holes producing a single black hole, 21 times the mass of the sun.
Specifically, on September 14, 2015, mismatched light waves were recorded as a “signal” at two observatories in the USA (one in Livingston, Louisiana and another in Hanford, Washington). The 4-km LIGO interferometers that recorded the waves use laser light separated into two beams that travel back and forth down the long arms of a 1.2-meter diameter tube, kept under a near-perfect vacuum. There was a 0.007-second (7 milliseconds) delay between the signals being recorded at both Louisiana and Washington. The oscillation or signal sweeps ranged from 35 to 250 Hz, lasting about 0.25 seconds.
Since that first detection on September 14, there has been the detection of gravitational waves from a second event (December 26, 2015) by both LIGO detectors. It can perhaps thus be said that these disturbances in spacetime are now firmly on the map!
According to  Einstein’ s theory of General Relativity, the distance between the mirrors will change by an infinitesimal  amount when a gravitational wave passes by the detector. It was expected that gravitational waves reaching the earth would affect our planet. When a gravitational wave passes, the compressing and stretching of spacetime stretches one 4-km arm while compressing the other, changing the distance the light has to travel. Scientists measure this interference in the light’s pattern, as any significant mismatch may reveal the presence of gravitational waves.
Emanuele Berti from the Department of Physics and Astronomy, The University of Mississippi and The Department of Physics, The University of Lisbon wrote a piece on the APS Physics site, titled The First Sounds of Merging Black Holes” (Feb 11, 2016) on the first detection of gravitational waves by the Laser Interferometer Gravitational-wave Observatory (LIGO) on September 14, 2015. He wrote “With Advanced LIGO’s result, we are entering the dawn of the age of gravitational-wave astronomy: with this new tool, it is as though we are able to hear, when before we could only see. It is very significant that the first “sound” picked up by Advanced LIGO came from the merger of two black holes. These are objects we can’t see with electromagnetic radiation. The implications of gravitational-wave astronomy for astrophysics in the near future are dazzling.”
The Keys of Enoch® tells us “The modulation of gravitational waves can be used to overcome the time-lag of electromagnetically based civilisations… There must be a move away from
electromagnetic waves to gravitational waves.” (Key 216:27).  The Keys further points out that advanced communication technology can also emerge from the modulation of gravitational waves, even with that which is beyond our physical dimensions, as string theorists tell us that gravity may be the one force that exists beyond our “brane”. With these confirmations of the existence of gravitational waves we are now poised to begin to learn more about the structure and nature of our universe. We can learn more about its hidden dimensions and perhaps eventually even the “far out” notion of “time travel”, at least from an observer’s perspective. With new types of detectors, we will be able to study those aspects of the universe not accessible to examination by our current methods that use electromagnetism. We will at last be able to see further back in time to the very early universe and study the mystery of dark matter, dark energy and black holes. The universe will literally begin ‘to speak’ to us!


Comparing "Chirps" from Black Holes

The best-fit models of LIGO's gravitational-wave signals are converted into sounds. The first sound is from modeled gravitational waves detected by LIGO on Dec. 26, 2015, when two black holes merged. This is then compared to the first-ever gravitational waves detected by LIGO on Sept. 14, 2015, when two higher-mass black holes merged. This sequence is repeated. The pitch of both signals is then increased, allowing them to be heard more easily, and this sequence is also repeated.

www.ligo.caltech.edu. Gravitational Waves Detected 100 Years After Einstein's Prediction Feb 11, 2016
https://physics.aps.org/articles/v9/17. Viewpoint: The First Sounds of Merging Black Holes Feb 11, 2016
www.physics.org. Gravitational waves detected from second pair of colliding black holes. June 15, 2016




Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Searching for Water–on Ceres and Mars

   By J.J. Hurtak, Ph.D., Ph.D., and Desiree Hurtak, Ph.D., MS. Sc.

            At any minute (starting 6th of March 2015) Jet Propulsion Lab scientists could be receiving a startling confirmation on vast water reserves on the dwarf planet Ceres as a result of the remote sensing technology onboard NASA’s Dawn Probe dawn.jpl.nasa.gov/. After some 3.1 billion miles, the spacecraft will answer questions on the nature of Ceres, particularly on the interior of a space object that may be 25% water.  Dawn is already in orbit and making its spiral down to the surface of Ceres where it will take an investigative look at this icy world that some scientists believe could house primitive forms of extraterrestrial life under its surface. Ceres, the largest object in the asteroid belt, and its neighbor, Vesta, the second largest object in the area, may also provide vital clues on the nature of the asteroid belt between Mars and Jupiter that was formed out of debris encircling Jupiter from an earlier time of our Solar system.  Some claim the asteroids are the result of a planet that was destroyed in the distant past.  Now these two sisters have been classified like Pluto, as dwarf planets.
            According to Carol Raymond, a planetary scientist at Cal Tech’s Jet Propulsion Lab, these are exciting details about two intact proto-planets that have existed “from the very dawn of the solar systems... they are [in fact]  two fossils we can investigate to understand what was really going on at that time.” Ms. Raymond is in charge of JPL’s program for studying small solar system objects in Pasadena, California.
            It will not be sending back  pictures or data until late April (2015), when it reemerges from Ceres’s dark side. Then, the Dawn spacecraft is expected to measure the surface features of Ceres, especially the shapes and size of the numerous craters that pock mark its surface. Scientists believe that Ceres has something like 43 million cubic miles of water and most of it is probably frozen. According to several planetary scientists, Ceres is unlikely to have a liquid layer. Raymond also says, “One of the intriguing questions is whether that ice retains enough heat to be subject to convection.” The European Space Agency’s Herschel Space Observatory last year (2014) detected water upon Ceres by using a space-based infrared (IR) telescope.
            These findings come at a time when other NASA’s current programs (2015 data from Keck and Infrared Observatories in Hawaii) on the study of Mars have confirmed a more massive oceanic system on Mars that had existed in its distant past. New data reveals a global covering of water once existed on Mars reaching a depth between l30 and 137 meters over the entire surface of the red planet for a period of a million years, enough water and time to start life. This matches the planetary data the authors (Drs. Hurtaks) covered in a conversation with NASA scientists back in August of 2001 at a conference where we were guest speakers.
            The recent probes announcing the findings of  massive water on the tiny Ceres and Mars in our Solar system bring us one step closer to an official  announcements of finding exo-biological life forms in our own backyard. These findings come as no surprise to us, particularly to the thousands who were listening to us in our historic conversations on Televisa broadcasts worldwide on Mars with legendary journalist, Pedro Ferriz, and at several major auditoriums in Mexico City back in 1985. More recent updates have been made through journalist, Jaime Maussan in 2013 and 2014. Throughout the world, our lectures on “Life on Mars” for the last forty years have given factual clues and actual close-up  pictures (Mariner-9) of massive water spillways and river systems that gave Mars its unusual network of canal-like features and oceanic water system that could have triggered Life millions of years ago. NASA can now start counting on its fingers the number of planets and dwarf plants that have potential for life in our Solar system.
            Let us reflect on one saying of Metrodorus, a 4th century philosopher from Chios, Greece, regarding the abundance of life that we must adjust our eyesight to the heavens with these words: “To consider the Earth as the only populated world in infinite space is as absurd as to assert that an entire field sown with millet, only one grain will grow.”

Watch for announcements on evidences of life beyond Earth coming in May 2015.




copyright © 2014 James J. Hurtak, Ph.D., Ph.D. and Desiree Hurtak, Ph.D.


NASA’s Cassini spacecraft is currently orbiting the ring system of Saturn. It has been on an extended mission since 2008 and amazingly continues to send back advanced data on Saturn, its moons and extensive ring system. The ring system has proved most amazing as it contains myriads of ringlets, moonlets composed of dust and icy rocks. It operates as an accretion disk with primordial matter, ice and micro debris. What is most interesting is that the rings are not as stable as they have appeared.  Originally, the rings were observed by the Voyager mission when it passed by Saturn (1980-1981), but a comparison with the Cassini images has revealed great differences in almost all the rings, especially the F-ring, over the period of less than thirty years. Thus, in a relatively short period of time the vast changes in the rings have shown spectacular morphologies.1 

            The changes in the rings of Saturn have completely overturned the classical picture of a stable system.  The current study of the massive ring system has produced evidence of gravitational resonance, but, more importantly and stunning, is the finding of the “F-ring” having a strangely, continuously changing pattern, from helical formations to propeller-like mini-spokes. Some scientists even believe that the rings are producing small moonlets from the collisions of fragments that exist in and around the rings, especially the F-ring which exists in the Roche limit, a point where the gravitational tug from the planet could tear a larger moon apart.  Again, the rings are made of dusty ice, in the form of boulder-sized and smaller chunks that often collide with each other as they orbit Saturn. Saturn’s gravitational field constantly disrupts these ice chunks, causing, as well as preventing them from forming moons. Saturn, itself, has the most moons of any of the planets in our solar system, over 60 objects of this type, but they are mainly outside the more familiar inner ring system with just a few in the area of the A- and B-rings, more towards the F-ring, but the majority lying in the G- and E-rings and beyond. Another question is the age of the rings. They may be as old as 4.4 billion years, but if they are so old why are they changing so rapidly?  Did they always do this or is there something new taking place?

            The analysis of the changing rings has become one of the most important topics surrounding Saturn over the past 7 years. Not surprising, The Keys of Enoch® proposed that Saturn would be a sign of change, revealing how we, the human race, should take a closer look at our evolving Solar system. Specifically, Key 304:11- 12 tells us: “Our sun, by virtue of being a variable star, will be seen as having great limitations for future evolutions.  This will be observable by visible exchange of the solar polarity fields and by the magnetic mapping of inner-solar magnetic lines rotating faster than the surface of the sun. These changes will also affect the rotation of Saturn. This will be seen as a periodic effect which will be noticed in the activity of Saturn's rings. It will illustrate new changes that will take place throughout the entirety of the solar system.”2

            This indicates that Saturn holds one of the clues to the next phase of our solar system’s evolutionary future. The first part of this quote was confirmed in the same words by Lika Guhathakurta of NASA headquarters in Washington DC that our sun is “a variable star.” 3  Thinking like that was unheard of before 2010 when observations of variations in the sun’s magnetic field were noted by NASA. Additionally, some research scientists (e.g., MGS MOC Release No. MOC2-297, 6 December 2001) have recently considered that Mars itself is going through climate change.4 So all planets may be experiencing some changes, it may just be more obvious within Saturn’s rings and possibly the polar regions of Mars.

            It is fortunate that we have a 30-year comparison made by Voyager (1980-81) from colleagues at JPL and the team of Dr. Jim Warwick in Colorado.  So why are the rings revolving and changing into strange patterns? Theories still abound. The answer to these deeper questions may lie in the nature of the outer planets and especially how the rings themselves seem to have rain affecting Saturn’s ionosphere.5 Saturn’s moon Rhea may also have rings around it, although this has not been confirmed. The rings of Saturn themselves although varying in width are incredibly thin, ranging from about 30 feet (10 meters) to several kilometers thick at most. The rings have slight pink, grey and brown colors due to the presence of dusty material mixed with the water ice.

            A definite change in the appearance of the rings is at work. Whatever the result of the new research, keep looking upward for we are about to learn more valuable information about how Saturn’s rings, as well as how its planets and moons, are forming and evolving as a miniature solar system.



1. Cassini-Huygens, Dougherty, M.K.; Esposito, L.W.; Krimigis, S.M. (Ed.) (2009)
“Origin and Evolution of Saturn’s Ring System” Chapter 17 of the book Saturn After Cassini-Huygens pp. 537-575.

2. Hurtak, JJ (1973)The Book of Knowledge: The Keys of Enoch® Los Gatos: Academy For Future
 Science. Www.keysofenoch.org

3. Solar Dynamics Observatory: The 'Variable Sun' Mission http://science.nasa.gov/science-news/science-at-nasa/2010/05feb_sdo/

4. Malin Space Science Systems “MOC Observes Changes in the South Polar Cap:
Evidence for Recent Climate Change on Mars”MGS MOC Release No. MOC2-297, 6 December 2001, http://www.msss.com/mars_images/moc/CO2_Science_rel/

5. Blame it on the Rain (from Saturn's Rings) NASA,  http://www.jpl.nasa.gov/news/news.php?release=2013-130

For more pictures see:


NASA's Voyager 1 at outer reaches of solar system, poised to enter interstellar space.

This artist's concept shows plasma flows around NASA's Voyager 1 spacecraft as it gets close to entering interstellar space. Image released Dec. 3, 2012. (NASA/JPL-Caltech/The Johns Hopkins University Applied Physics Laboratory)
Image credit: Defense Video Imagery Distribution System: (DVIDS).


NASA's pioneering Voyager 1 probe has encountered an uncharted new region at the outer reaches of the solar system, the spacecraft is at the precipice to go into interstellar space, space scientists say.

Voyager 1 which has been traversing the solar system for more than 36 years, and has observed a dramatic drop in solar particles and a concurrent big jump in high-energy galactic cosmic rays last August, (2012) the scientists announced in three new studies published June 27, 2013, in the journal Science.

'What we're observing is really quite new.'

  • Voyager project scientist Ed Stone

Voyager 1 has now officially entered a region called the “magnetic highway”.  This area is a threshold between charged particles and cosmic rays from outside the heliosphere becoming stronger and the disappearance of charged particles from inside the heliosphere connected with our sun.
In this unique region NASA is finding charged particles connected with the solar magnetic field disappearing while the cosmic rays from space are getting stronger. They are looking for a third sign where the direction of the magnetic field changes.  If this is found it would mean the presence of an interstellar magnetic field.
The Keys of Enoch® mention that we have been living in a type of cocoon. According to Key 204:10 “The Magnetic fields create neutral zones for the interfacing of high speed molecules which control growth and development in all living things.”  This also indicates that many of the changes our planet has experienced in its geological past, especially those that has affected life, have come from a change of our own magnetic field, although cosmic rays are sometimes able to penetrate into our heliosphere.

Voyager 1 and its twin, Voyager 2, launched a few weeks apart in 1977 to study Saturn, Jupiter, Uranus and Neptune, are now completing their unprecedented "grand tour" and will soon be flying toward interstellar space. Voyager 1 is arriving first. The spacecraft is the farthest man-made object in space traversing 10.8 billion miles from the Sun with signals traveling at the speed of light take 16 hours from earth to reach the Voyager. The Voyager is also carrying a message in the form of a phonograph record, which is a 12-inch gold-plated copper disk containing human sounds, languages and images selected to portray the diversity of life and culture on Earth. The musical selections are from different cultures and eras, and spoken greetings from Earth-people in fifty-five languages, and printed messages from President James Carter and U.N. Secretary General Kurt Waldheim. Along with this are 115 images encoded in analog form. There are instructions portrayed in symbols which explain the spacecraft’s origin and how to play the record.

On Aug. 25, 2012, the probe recorded a 1,000-fold drop in the number of charged solar particles while also measuring a 9 percent increase in fast-moving particles of galactic origin called cosmic rays.Since the probe did not measure a shift in the direction of the ambient magnetic field, it is an indication that Voyager 1 is still within the sun's sphere of influence.

"I think it's probably several more years — 2015 is reasonable," said Voyager project scientist Ed Stone of the California Institute of Technology in Pasadena, lead author of one of the new studies and co-author of another. But he admits it is just speculation, as there are no definitive models.


The heliosphere extends at least 8 billion miles (13 billion kilometers) beyond all the planets in our solar system

Mars Science Laboratory (MSL) gets ready to search for life on the Martian surface


The success of Jet Propulsion Lab's "Curiosity" landing on the surface of Mars, August 5-6th, 2012, a $2.5 billion USD project by NASA, brings a new and exciting chapter that could inaugurate the finding of life on Mars, past and present. The entry into the Martian atmosphere and the descent time of seven anxious minutes was viewed on millions on television screens around the world, with live NASA feed from JPL in Pasadena, California. There have been no serious attempts to answer questions as to the possibility of microbial life on Mars since the analysis of topsoil by the Viking 1 and 2 missions in 1976. That data was inconclusive, but now these questions can again be raised, redefined by the Curiosity experiments. If evidence is found, then perhaps a "sample return mission" or even a manned mission to Mars will be next in line. A manned mission is not out of the question in the next 25-50 years. The Mars Society (marssociety.org) believes it feasible since "water" appears evident on Mars. If subsurface water can be tapped, it could generate oxygen for the first astronauts on Mars, as well as allow plants brought from Earth to be grown.

Top enthusiasts from Charles Elachi, Director of JPL, to Scott Hubbard of Stanford University have acknowledged that many engineers and planetary scientists are willing to make a "one way mission" to Mars and consider it their future permanent home. If they wish to return they must await the planetary-orbital window that occurs every 2-3 years before attempting a return to Earth. At those times, the trip would take between 7-9 months.

Dr. J.J. Hurtak, President of AFFS, once asked Louis Friedman, deep-space scientist and past director of the Planetary Society, whether "Earth and Mars ever shared the same biosphere in previous times?" He said he could not answer this question, but the latest mission to Mars may be able to begin to answer the important questions regarding previous life forms or those possibly now living under the surface of Mars. If organic carbon or certain forms of methane are found, that would indicate the presence of microbial life. Then the questions arise: Should we go to Mars or adopt a "hands off" policy not to return? Would examination of Martian life forms, maybe through a "sample return mission," reveal DNA or RNA like ours?

For the present, the Curiosity's pulsing and sending signals to Earth will help us understand if the quantity of water below the surface is sufficient to support the new generation of explorers. Curiosity will conduct Dynamic Albedo of Neutrons (DAN) experiments detecting neutrons beneath the Martian soil. This will determine Mars's water content to an accuracy of one-tenth of 1 percent (0.01%) and resolve layers of water and ice beneath the surface. All the experiments which will be scheduled over the next two years, should make the MSL mission more resilient in continuing the quest begun in 2003 by the earlier rovers Opportunity and Spirit. (The Spirit Rover landed on the 3rd of January, a significant date for AFFS.)

In the context of human missions to Mars and the beginnings of establishing a human colony there in the next fifty years, if no contemporary life forms are discovered, humans may attempt to terraform the planet, creating a “terrestrial” atmosphere (using a combination of greenhouse gases) while living off food factories sequestered deep beneath the surface. With this we can become real co-creative "Human-Martians"! For more information on the MSL experiments and new data/pictures see: http://mars.jpl.nasa.gov/msl/


New Evidence for the Multiverse

    Copyright © 2011 Academy For Future Science

The idea that there are multiple universes other than our own known physical universe has been popularized and culturally rooted for years throughout the media of science-fiction, fantasy, and film, but now scientists are starting to agree. This scientific acceptance that we are part of a “multiverse” began with inflationary cosmology models which have evolved in theoretical physics out of those first proposed in 1980 by Alan Guth to explain the relatively homogeneous, flat structure of our local universe generated by our presumed Standard Model (Big Bang) origin. In this line of thinking, the early physical universe burst from its pinpoint-origin and rapidly, exponentially expanded outward at unimaginably high temperatures, then cooled, but subsequently re-heated enough to ignite the stars, and to then inflate—forever, thus the naming of this school of thought "Eternal Inflation". 

     The idea of an inflationary universe is widely accepted in modern physics, particularly since its expansion by the work of Andrei Linde (1982). Linde put forth the idea of inflation taking place through a scalar field which amplifyied the original energies of the Big Bang outward or down "a potential energy field", something like an avalanche on a grand scale.  In Linde's model ("new inflation"), the bubbles which formed as the early universe cooled were separated by inflation, and are forever speeding apart. 

Since it is thought by many in physics that each "bubble" could have contained its own nascent universe, it has long been held by String Theory theorists such as Dr. Michio Kaku, that the universe ought more properly to be called the Multiverse.  Until now, these ideas have remained a mathematical abstraction, however, because humanity has lacked the tools to search for any physical evidence to determine whether such universe-bearing bubbles did indeed separate from ours—because every physical event leaves a signature, or scar as it were—there should be leftover telltale marks at the outer edges of our universe (where the light is the oldest) from which the sequence of inflationary action could be determined.

     Whether we need to use optical telescopes of a greater sophistication than the Hubble, or instruments to search out, map and measure the background radiation left over from the great origin event—until now there was simply no tangible proof. With a new generation of instruments that have been sent out beyond Earth's atmosphere in recent years, such as the Wilkinson Microwave Anisotropy Probe (which is designed to map the background radiation in our universe), Dr. Hiranya Peiris and her team of cosmologists at University College London have now announced that the data from this probe is pointing to four areas exhibiting the characteristic disc-shaped signature (what might be called "scars") indicating a region these other "bubble" universes may have been thrown apart from ours. 

More data is, of course, needed to firmly corroborate that these areas are evidence of other "bubble universes", but it is hoped that such evidence may be coming soon from the Planck Telescope, another new-generation background-radiation measuring device.  In the meantime, the announcement of the data from the Wilkinson Microwave Anisotropy Probe (WMAP) which has been returning data to scientists for seven years now, is a very exciting development in cosmology.  (Read about the announcement here http://www.bbc.co.uk/news/science-environment-14372387

     By far the majority of mainstream physicists today accept one or another of the inflationary models proposed over the last thirty years, with criticism and dissent present in the field as well, but not all agree with the speculative theorizing about other universes that is implied by the math.  All do, however, generally accept that all of the observable universe originated in a small, causally connected region;  those thinkers who are theorizing a multiverse are nevertheless constrained by the dialectic of the material, wherein any other potential universes were more or less mechanically spawned out of the origin event (Big Bang), and are moving away from us so far, so fast, that there is, not nor cannot be, any information flow coming from those universes to ours. 
     However, alternatives exist, as we find in The Book of Knowledge:  The Keys of Enoch® by Dr. J.J. Hurtak, PhD., PhD. which uses the term “universes” throughout the book.  What if our local physical universe, rather than merely having "spawned" (with all the impersonal coldness that word implies) a number of other physical universes that simply move apart forever, had itself been brought into being through a similar "bubble" out of a parent universe?  And what if there were actually an ongoing information flow from that parent universe into ours?
     The Keys tell us that there are regions of interface between our universe (indeed, our Earth as well) and a much vaster matrix:  what the mechanistic scientists refer to as an inflationary "bubble" is more accurately a probable spin off from a greater universe.  Moreover, germane to a fuller sense of the connectedness of our universe to others, we read in Key 204:21 that "...we, as one living sub-system of intelligence pulsate within larger evolutions of star intelligence.  Our local universe is a sub-system to larger membrane force fields of star universes" and, expanding outward again in a super-inflationary manner, that "These and other astrophysical sites are points of contact with the greater universes, which show our part of the chiliocosm-- our part of the collective interplay of a thousand-plus universes intersecting with categories of both physical and non-physical intelligence" (Key 215: 2).
     The cosmology of The Keys by does not negate the rational thinking process of science; rather, by using the more nuanced word "chiliocosm" instead of the “multiverse", one is invited to contemplate a time when rational thought, not being divorced from the higher realities from whence it originated, will use hard data toward the comprehension that we are not simply orphans on the edge of space, but are part of a vast extended, interconnected family in the heavens.


June 3, 2010 was a monumental beginning of an important program where six future cosmonauts from Italy, France, China and Russia in front of a plethora of cameras and newsmen in Moscow walked into a confined space for the next 500 days, maybe even 520 days, until November 2011.  The appearance of six happy space travelers marks the beginning of an experiment of living in very close quarters and spending many days together in a series of interconnected metal canisters that comprise the model of a one-way space probe to Mars. The complete round trip simulation will cover the amount of days it will take to travel to Mars and back. The real mission to Mars is already tentatively planned for 2030.
Life during interplanetary space travel is not only stressful, but requires a pre-testing environment to work out the scientific, medical and sociological challenges of living in a confined “space environment”. 
It is hoped that the Mars500 program will bring us one step closer to our planetary neighbor and  help open the door to the past and the future in providing answers to the time when Mars had an atmosphere like Earth, with an abundance of water. This has also been recently confirmed by the research of Dr. Gaetano Di Achille and Professor Brian Hynek from the University of Colorado, Boulder as reported in the journal Nature Geoscience.  The study reveals a vast ocean once existed on Mars 3.5 billion years ago.  They identified 52 delta regions fed by numerous river-like systems studied over numerous valley networks. They now claim that the ocean covered around 36% of the planet and contained 30 million cubic miles of water.


picture credit NASA: Greg Shirah

Water, of course, is a key ingredient for life and so Mars is more likely to house some forms of life.  Even  Edwin “Buzz” Aldrin, the second man on the moon (1969)  is pushing to go to Mars and Russian researchers are fascinated with a strange monolith and other peculiar anomalies connected with the moon of Mars called Phobos.
The Russian space agency also wants to return to Mars, in part, to complete the 1989 Phobos mission to one of the moons of Mars. This original mission, not significantly mentioned in the press, failed which resulted in the loss of a one billion US dollar probe called “Phobus 2” which housed a multitude of experiments.  Most interesting were the final images recorded by the Russian cameras from the “Phobos 2” probe which made it to the moon of Mars but then disappeared under the mysterious circumstances of an elongated shadow that seemed to be hovering nearby the probe.  (http://www.keysofenoch.org/html/re-examining_the_lost_mars_pro.html) In stories released on Televisa (Mexico City) in 1989 by Dr. J.J. Hurtak and noted television journalist, Jaime Maussen, film footage showing pictures of unusual phenomena prior to the disappearance of the Soviet probe was discussed with Russian experts who did not rule out the possibility of a real extraterrestrial interception that nullified the mission that was also being monitored by the U.S. Deep Space Tracking Program at Cal Tech’s Jet Propulsion Lab in California.
For More information on the Mars500 see:
http://www.mcc.rsa.ru/mars.htm#  (Russian)
http://mars500.imbp.ru/en/index_e.html (English)



by  J.J. Hurtak, Ph.D., Ph.D.,
Copyright © 1973, 1976, 2006 J.J. Hurtak 

Five hundred years ago human beings were seen as the pinnacle of creation and their Earth was acclaimed as the center of the universe. This changed with Copernicus four hundred years ago and is undergoing further change with the findings of the Mars Global Surveyor showing evidence of previous fluvial activity on Mars, the Mars Odyssey finding ice crystals, the Mars Express with  MARSIS technology exploring the Martian subsurface, the MER rovers, and the forthcoming Phoenix project in 2007.

Photo: Mariner 9/ NASA
The Book of Knowledge:  The Keys of Enoch® Key 104 

The following is an excerpt from an article by this author published in 1976 covering anomalies that may open a profound chapter in humanity's search for its cosmic origins and the meaning of some of the pyramidal analogs on planet Earth:

The historic gap between ancient documents claiming some form of extraterrestrial visitation and our present search for 'a viable extraterrestrial paradigm' is now being bridged by the findings of remarkable pyramidal structures on Mars by the Mariner 9 probe.   The Mariner 9 spacecraft which reached Mars on November 11, 1971, circled the planet 698 times in 349 days, gathering a wealth of science data that has revised all previous concepts of Mars. For more than half a Martian year, the spacecraft maintained an instrumental surveillance of the planet as the seasons changed beneath the cameras. [1]

Besides Mariner 9, photographs from 1033 miles up, showing a sinuous rille 2500 miles long indicating that free-flowing water may have existed in Mars geological history, a series of tetrahedron pyramids were seen.  These Martian pyramids appear in sets which are centered at approximately 15.258 latitude and 198.425 longitude, appearing on a somewhat barren plateau. A comparison of two photographs taken from a viewing angle of 6.018 degrees on February 8, 1972 and 37.510 degrees taken on August 7, 1972 shows near perfect tetrahedrons of two denominations observed from two different time directions when the Sun was well above the horizon. These show remarkably exact pyramidal faces disclosing that these pyramids are not part of a natural phenomena (see Fig. 1.) [2]

We know from the work of Nobel prize winner Jacques Monad that mother nature does not create surface realities by straight lines or repeatable structures, but here we have in the region of Elysium Quadrangle on Mars sets of pyramids showing exact repeatable patterns with what appears to be the same mathematical distance between the sets.  Could these structures whose volume is estimated to be some 700 to 800 times the volume of the Great Pyramid in Egypt be part of an earlier evolutionary story, some other evolutionary mechanisms of life in the local universe? [3]

It is true that the geological history of Mars shows that half the planet erupted into turmoil as lavas flowed and great volcanoes poked into the Martian sky. Sometime during the three and a half billion year old history of Mars, and probably fairly recent, copious quantities of water flowed on the surface of Mars and eroded immense arroyo beds. Yet, in the midst of a planet which is geologically active with volcanic mountains and calderas larger than any on earth the Mariner 9 B frames MTVS 4205-77, DAS 0779453 and MTVS 4296-24 DAS 12985881, taken in the east central portion of the Elysium Quadrangle, showed a perfect set of tetrahedron pyramidal structures too unique to be a result of natural formations.

Like Carl Sagan and others, I pointed out that non-artificial pyramidal structures can be explained by one or several of the following mechanisms:

(1) Wind-faceting of volcanic cones, lava flow ridges and elongated level morphologies by prevailing storm winds. These winds could be either part of the primary circulation pattern of Mars or dust storms of long duration.

(2) Regolith mantling of erosional remnants of either intersecting resistant dikes, dipping sediments, or other bedrock forms that have pyramidal appearance.

(3) Probably glacial sculpturing producing horns analogous to alpine glacial horns on earth.

(4) Rotation of solidified lava blocks in the underling molten lava. The tilting of such solidified blocks could expose corners protruding above the lava field.

Closer examination, however, by image enhancement has shown details of parallel walls and structures build exactly above the water line as determined by the US Geological Survey for the surface of Mars. [4 ] In fact, the Soviets have reached the opposite conclusion than the Americans on the question of previous evolutionary life on Mars by reprocessing the NASA data and the  more than 54,000 Mariner 9 frames.

Additional arguments have been brought forth by traditional geologists who have argued that the unique mountain formations in the Peruvian higlands provide an analog for wind-faceted Martian pyramidal structures. More extensive research, however, reveals non-natural pyramidal sets clustered in Chan-cay, Jequet-epe-que, Viru, etc., in the surrounding Peruvian areas. It has become clear that the many earth mount clusters, so far discovered in Peru, are not to be dismissed as geological anomalies, but with further investigation many have been discovered to be, in reality, astronomical-calendrical complexes built during previous millenniums of time.

Compared to the grid network of pyramidal sets in Mars' Elysium Quadrangle, the Peruvian area does not give weight to the arguments that the pyramids are a result of regolithic mantling of erosional remnants of either intersecting resistant dikes, dipping sediments, or other bedrock forms. Nor are there any visible faults that would indicate structural controls relating to the grid formation of the four tetrahedron pyramids.  A site of multiple pyramidal structures suggest the need to update the arguments of surface morphology. [5]

Additional attention to striking anomalies of pyramid structures on crater rims is drawn by Mariner 9 cameras to a location near the south pole of Mars (original B frame 1417-160341 changed to 42125) which shows a regular assortment of high plateau grid units, box-like structures of several kilometers each with raised bulwarks possibly used as an experimental area for a biome, or as some type of  information gathering grid pattern that was destroyed by cataclysmic change. This site was  nicknamed by NASA as the "Inca City."  A closer examination of aerial pictures shows similarities with Machu Picchu in Peru.  How many professional archaeologists have ever heard of the site of Morro Solar?  It is within a mile of Las Palmas, on the outskirts of Lima, and reveals acres of scientific buildings and an elaborate hydraulic system virtually unknown to the scientific world.  How many know about the twenty-five pyramids at Apurle in northwestern Peru?  Jack West  [6], a contemporary archaeologist, has recently brought forth pictures showing scores of small pyramids within Peruvian pyramidal shaped mountains. More and more archaeological evidence has shown that what geologists for centuries have perceived as mountains have, in actuality, turned out to be pyramidal artifacts from previous millenniums.

Pyramid structures which range in dimensions of 3.0-base to 6.0 km mean diameter have been identified in the Elysium Quadrangle of Mars. Geologic processes that could result in such features have not produced a satisfactory scientific explanation for some of the pyramids. Thus we must keep in mind that what may appear to be a natural hill from an aerial view may be a pyramidal artifact.

Perhaps, instead of preparing for the contemporary scans of the Martian micro-intelligence, we might prepare ourselves for a close examination of pyramidal structures as blueprints for bio-magnetic analogs?  The Martian and Egyptian pyramidal grids may be models preparing us to meet the superior architects in our immediate universe?  Perhaps, the pyramid is a future artifact?


[1]Hurtak, J.J. (1976) "The Meaning of the Pyramids on Mars" in Beyond Reality.  March-April, 1976. 

[2] Hurtak, J.J. (1973) Picture and details of tetrahedrons first published in The Book of Knowledge: The Keys of Enoch, Los Gatos: Academy For Future Science, pp. 35-36.

[3] Dolphin, Lambert. (1974)  Private conversation. Stanford Research Institute, Menlo Park, CA. [4] Mazursky, Harold. (1976) Private conversation at the USGS office. Flagstaff, AZ. Mazursky was considered one of the leading authorities on Mars and the Viking 1 and 2 missions.

[5]Sagan, Carl. (1973) "Sandstorms and eolian erosion on Mars" in Journal of Geophysical Res. 78. pp. 4155-4162.

[6]West. Jack (1972) Trial of the Stick of Joseph . Sacramento: Rich Publishing House.

MARS Early Water  March 2004
Did Life as We Know It Once Exist on Mars?

Copyright © 2004 J.J. Hurtak, Ph.D., Ph.D.

NASA's mission briefing (the week of 3 March 2004) on the progress of the Mars rover at Meridiani Planum, introduced startling new evidence of water once abundant on the red planet and the astrobiological puzzle of the close association of water and sulfur. The evidence of the Mars Exploration Rover (MER) called Opportunity clearly showed what some planetary scientists and exobiologists call "overwhelming evidence" of water–lots of water–existing on the planet Mars.

As a key to the existence of water, the findings announced at NASA headquarters indicate that the abundance of vast salt and sulfur traces and deposits are good indicators for massive water activity in the distant geological past.  Specifically, Opportunity has shown that the heavy salt content on the outcropping rock is four times the amount found on the ground and with a quantity of sulfate. "You have to have a lot of water involved to get these results....Mars was habitable for a long period of time," said Steve Squyres, principal scientist for the rovers at NASA. [1]  The support for strong fluvial activity is evidenced in:

  1. the Jarosite rock (composed of iron rich materials, iron sulfate hydrate, etc.); usually this indicates the rock's wet history having been in an acidic lake or an acidic hot springs environment. evidence of sulfate in rocks; and,
  2. massive amounts of salt in the samples, four times higher than that which is in the ground
Courtesy: NASA/JPL/Cornell

El Capitan Rock

The "brewing evidence" shows a strong case for an evaporation sequence of conditions that moved from high levels of sulfur to sodium chloride (NaCl) (water-soluble solid) to bromide, as well as salt-rich brine material, all indicative of strong water activity where byproducts precipitated out of brine.   The recent Mars findings are unique and could be the historical "smoking gun" that will lead to further evidence of a once living habitat for life on Mars. Advanced analysis through the Moessbauer spectrometer and alpha X-ray spectrometer (provided by the international team from Mainz and the Max Planck Institute in Germany) indicates

Courtesy: NASA/Max Planck
that ground water could create an environment favorable for life. In short, the signs of strong water movement around and through the rocks allow the rocks to speak of environments within meteorite craters that could have had all the right triggering mechanisms for life that we find here on earth.

In the coming days (Sols), the Opportunity team will also look at the fantastic accumulation of different spherical anomalies NASA calls "blueberries".  Even thougLeft sphere is cut by RAT for analysis
Courtesy: NASA/JPLh the material is simple "grey" rounded pebble-like structures, they hold possibly additional clues to water activity.  These round particles (l mm thick) could be from volcanic hailstones, droplets of volcanic glass, or they could be spherical concretions that formed when there was liquid water in a rock.Another sign of water comes from the holes within the rocks which are clearly evident.  As crystals grow within rock, they become tabular like medicine pills.  As they grow, they push the rock aside. When the mixture of water chemistry dissolves away, or erodes away, they leave tabular voids, or in some instances small spheres.  Thus, the rocks have holes because:

  1. the rock has not dissolved but the inner material has precipitated out of the rock; or
  2. unique water chemistry and stratigraphy allowed the rock to soak up water like a sponge, and as the holes increase in size wherever precipitation grows, it replaces the rock. [2]

Thus, there are two basic scenarios of geological  surface activity in the Martian past that one needs to consider:

  1. either there was a tremendous amount of interaction from volcanic activity which resulted in an accumulation of basaltic ash that was later drenched with water; or
  2. Martian sediments were formed and are in their present condition because of evaporating brine (water with a lot of salt).Courtesy: NASA/JPL

Dr. Jim Garvin (NASA's leading scientist for Mars and Moon explorations), Ed Weiler (associate director of NASA), and other experts were very careful not to give reporters any time-line for the early existence of water on Mars, while other scientists are willing to say this would fall within a geological time period of 3 to 4 billion years ago.  This writer recalls talking to Garvin in the mid-1980s when Garvin spoke of his interest in participating in a far-reaching program of  "exploring Mars that would turn a dream into reality." [3] In conclusion, NASA now agrees that there was an extensive presence of water on the Martian surface for an extended period of time. Whether this was long enough to trigger life as we define it on planet Earth remains to be seen. The variety of the evidence suggests that the next mission is to find "fossils" which will be the confirmation of the beginnings of the great chain of life. Life might not have been so fortunate to continue as it did on planet earth, but there is no clear clue why it would not have started.  We know that Earth, itself, has had many cataclysmic epochs where massive extinctions took place all over the globe.  Could Mars have been so unlucky that a similar extinction ultimately destroyed all life? Let's hope we don't have to stay tuned too long until the next chapter of life unfolds on Mars.

1.  Dr. Steve Squyres, principal scientist for MER exploration at NASA briefing 3 March 2004.
2. Bentley Clark at press conference 3-03-04.
3. Personal conversation with Dr. Jim Garvin at time of SIR-A briefings, JPL, Spring 1986.


Copyright © 2006 by J.J. Hurtak, Ph.D., Ph.D.

Image (Left) E11-03412                  (Right) SO9-02603
December 22, 2001                               August 26, 2005
Image credit: NASA/JPL/Malin Space Science Systems

Images taken by NASA's Mars Global Surveyor (MGS) showing the flow of 'liquid water' on the surface of Mars were released on 7 December 2006.  This has increased the scientific expectation that Mars could have the same mechanisms of evolution as its sister planet, Earth. Our knowledge of Earth tells us that 'where there is water, there is the mechanism of organic life' and the future possibility to create a human habitat. The discovery of liquid water on Mars is not only momentous evidence of life past, but a major step toward the future 'humanization' of outer space.

        The evidence of water comes from a comparison of several images from the Global Surveyor's Mars Orbiter Camera (MOC). While image data acquired in December 22, 2001 (E11-03412) showed no evidence of water, images of the same geographic point on August 26, 2006 (SO9-02603) showed new landscape traces, appearing as a place where liquid water recently flowed.


Several pictures have been taken of the site, starting on 30 August 1999 (MO4-04175).  A light deposit was seen with the MOC as early as 21 February 2004 (R14-02285), the first indication that something was taking place, looking like a stream bed on a downslope area in a specific mid-latitude gully area on Mars.
        In fact, several gully regions have recently revealed newly formed light-toned areas, usually around southern walls.  This is an attribute one would expect of surface materials eroded by a fluid substance with the properties of liquid water. Numerous elongated marginal branches and pathways mirror exactly how waters flows around obstacles. The liquid flow is clearly visible even at low relief and is not the movement of dust particles.  
        Initially it was assumed that this was just the result of wind blasts on the surface of Mars, but the fact that several Martian gullies have shown similar surface changes has allowed scientists to reconsider that what they are observing is evidence of a liquid water flow.  Gullies would be the most obvious places for water flow and these new observations have been characterized as a "squirt gun" effect, where small amounts of liquid water flow out from near surface sources for a short time before refreezing (NASA, 2006). Apparently, snow and ice flow is strong enough in some of the Martian gullies to cause a brief, low-volume debris flow, initially energized by liquid pressures but in which ongoing flow, freezing at both the top and bottom, takes place after a short period of time.  The most promising images (as seen here) have been taken from a crater in Terra Sirenum  near 36.5 degrees South, 161.8 degrees West, and there are other images such as those taken of the southwest wall of a crater in the Centauri Montes region near 38.7 degrees South, 263.3 degrees West.
        In addition to the obvious surface brightness values, remote sensing scientists have observed that the new light-hue deposits are clear evidence that a surface change has occurred.  Even to the amateur observer, it is evident that there are new, relatively long, extended marginal branches in the gullies.  These are consistent with water flow patterns at relatively mild inclination levels (image enhancement indicates the slopes are between 20 degrees and 30 degrees). Because the materials have retained their light hue over a period of time, scientists have considered this due to various sediments captured by the flow such as salts, or simply frost or ice.
        All this has encouraged NASA to explore Mars further in a search for organic remains of micro-life. NASA's forthcoming Phoenix program to Mars (2007-2008) will employ TEGA (the Thermal Evolved Gas Analyzer) which has eight thermal ovens the size of a common writing pen, that will receive soil from the lower arctic area on Mars and then heat it up to look for signs of life.
        How do these new findings fit into the picture of our world?  In recent years a research team made up of members from the Mars Society and NASA Ames Research Center in northern California traveled to Devon Island, some three hundred miles south of the Arctic Circle.  A 20-member scientific team lived in a small habitat similar to what would be placed on the Martian surface (hopefully by 2024) to find clues to the sociological and technical survival skills required for living in Mars' cold, windy and arid landscape environments (Mackay, 2006).       
        Conceivably, Mars may soon be offering us something we can no longer find on earth: empty continents into which excess populations could migrate.  As with any living environments, the availability of clean water is a crucial factor.  The finding of 'water resources' on our sister planet is a major factor for off–planetary movement of space pioneers and is part of a solution to exo-industrialization development using resources in outer space. Water, for example, could provide not only a survival resource but an energy resource, establishing the base-line for the growth of scientific habitats to suit a new generation of humanity.  
        Mars ultimately could become a new stepping stone toward the solution to population growth, but proper space law is required so that we do not destroy the planet's precious resources, while allowing for reasonable conditions in which we can share bio-habitats.  As we seek out new ways of planetary cooperation and the elevation of our standard-of-living, space may afford us:

        . Large human habitat structures that can be built on the Moon and Mars
        . Complex systems of space biospheres, used also as way stations for travelers
          (as in the  film: 2001: A Space Odyssey)
        While the short-range motivation for some is space industrialization, others envision the possibility of small city platforms on the high frontier with the "pull" of both physical and humanistic expansion–and thus survival– of humankind. As we gain a new living environment in space,  we also need to acquire additional long-term goals establishing friendly, space-derived services and products for the development of future generations of humanity living in space.  With a new space law (Hurtak, 2005), the sharing of space resources will come as a bonus to our grandchildren.  The next great leap for humankind is right before us!

1. NASA (2006) Pictures cited are from the MOC operations during the multiple extensions of the MGS mission conducted under NASA/ Caltech/Jet Propulsion Lab leadership.  1999-2006.
2. MacKay, Christopher (2006) Conversations between MacKay and this author at the 7th Annual Mars Society Conference, Washington, D.C., 7-12 August 2006.
3. Hurtak, J.J. (2005)  'De olho no espaco para preservar a Terra' in A Noticia News, Santa Catarina, Brazil.  October 9, 2005.

Space Law Needed for The Protection of Martian Resources

by J.J. Hurtak, Ph.D, Ph.D.
AFFS Corporation

Excerpts from a Paper for the Mars Society Conference, 
Copyright © 2003 J.J. Hurtak


The recent confirmation of surface and subsurface ice and water reservoirs on Mars represents ground breaking news and the need to prepare Space Law documents that will preserve and protect these critical resources by future missions to Mars. The Mars Global Surveyor spacecraft not only concluded that Mars has a molten liquid core that has some similarity to Earth, but it has detected surface and the possibility of even larger subsurface water reserves that could prove useful to human habitation. Along with this evidence, the Mars Odyssey orbiter confirmed (in 2002) ice at the north pole (and in 2004, the Mars Express has confirmed ice at the south pole and hydrogen in the atmosphere).The January landings of NASA's Spirit and Observer missions hope to write a new history on the shared biosphere of Mars-Earth and the possible beginnings of life on earth connected with Mars.  A new generation of ecological issues on Mars stands before us which exemplify the interconnectedness of life and its natural support systems for future life on Mars. Modern scientific discoveries are revealing that localized activities can have global consequences and that dangers of contamination can be slow and perhaps barely perceptible in their development until it is too late.

Traditional environmental law and international diplomacy offers some practical guidelines for confronting such situations. Environmental problems of the past were addressed largely through unilateral actions, national legislation, and occasional international treaties, all based on unmistakable evidence of damage. However, if the international community is to respond effectively to the new environmental challenges of the Martian resources like water, a substance vital for species survival or extinction, governments must undertake coordinated actions before damage becomes tangible and thereby possibly irremediable.

1. Discovery of Martian Fluvial History

There is growing evidence that a far larger body of water inundated the northern plains much earlier in Martian history. Immense outflows likely formed  large ice-covered lakes or there may have been one large ocean. Along with others in the remote sensing field this author first raised this tantalizing possibility in the mid-1970s after he identified possible shorelines in the Mariner-9 images. This interpretation along with others in the field like Michael Carr originally received additional support from Prof. James W. Head (Brown University) and his colleagues.[1] Using remote sensing measurements made by the Mars Global Surveyor spacecraft, they found that at least one of Mars's putative shorelines lies along a boundary of nearly constant elevation –a result most easily explained by erosion associated with a standing body of water. This would fall within a geological time period of 3 to 4 billion years ago.

While the geologic evidence for an ancient ocean appears increasingly persuasive, the  genesis and timing of its existence is still unknown. Until recently, geologists thought that if a large body of water ever existed it must have resulted from the discharge of the outflow channels and thus would have first appeared about midway through Mars's geologic history. However, some planetary scientists have taken a different approach, first by considering the hydraulic conditions required to explain the channels themselves and then by extrapolating those conditions backward in time. We conclude that an ocean on Mars (as on Earth) almost certainly condensed shortly after the planet formed.  Cameras from NASA's Mariner-9 and Viking l and Viking 2 documents, and more recent findings of heavy hydrogen concentrations by Odyssey show evidence suggesting that catastrophic outflows repeatedly discharged massive floods onto the regions of the Valles Marinaris and Chryse Planitia.

But what about today? Closer examination of both old and new documents from Martian orbiters show huge potential reservoir areas in the planet's southern highlands. Of the planet's total estimated inventory of 0.5 to 1.0 km of Hydrogen between 94 and 98 percent of it remains unaccounted for, the vast bulk of which may reside as ground ice and groundwater beneath the Martian surface [2] The total volume of water ice present in the south polar cap is still unknown but is believed to be more shallow than in the north which would be between 1-3 km in thickness. Both have liquid water according to the Mars Global Surveyor findings (2003). If both caps are composed completely of water, the combined volumes are equivalent to a global layer of between 25-35 meters deep spread out across the planetary surface. This is comparable to 14.2 million square km of Antarctica that is covered with ice at an average depth of 2,000 meters.

 New findings presented by researchers predict that most gullied surfaces will not be sites of near-surface water reservoirs because the snow surface is now gone near the equator.[3] At the Martian surface, the low relative humidity of the atmosphere means that ground ice is thermodynamically unstable at the "warm" latitudes around the equator at 40 degrees and, therefore, dissipates into the atmosphere. Depending on local conditions and variations in subsurface properties, the average depth of this desiccation ranges from a few centimeters at the planet's middle latitudes to as much as 1 km near the equator.

 Ground ice could also be present in mass deposits in the northern plains, an expectation based on the evidence of the early ocean and possible flooding by outflow channels later on. As a result, the sequence of volatile-rich layers underlying the plains is likely to be quite complex, having been built up through multiple episodes of flooding, freezing, sublimation, and burial. This complexity has undoubtedly been compounded by other geological movements and vicissitudes on the planet's surface, which may or may not provide for enriched soils.

Water activity exists, in some form, currently and in the past, within centimeters of the surface and at the ice caps on Mars. This fact has already influenced our rationale in the search for landing sites and should continue to provide important areas for future sample return missions. While at the same time, the rock layers above gullies, previously thought to be a water source, are extremely difficult to access and are unlikely landing sites.

Study of the thawing of the glacial layers at the poles and snow melt accumulations in the craters of Mars also have important implications for the search for life on Mars, as well as the potential for human exploration. If liquid water is produced and regenerated on relatively short time scales associated with the variations in orbital parameters and if it reaches up to several tens of centimeters of the surface, being stable for extended period of times, it could provide a means for life to have survived at certain periods of Martian history, and could provide favorable sites for extant life today. However, the pole-facing mantles provide an excellent opportunity to sample and study the water-rich reservoirs which are the key to all future life surviving on the planet. Hence, the water-units on the surface or subsurface are the potential resources not only for exobiological exploration of the planet, but for the survival of  human societies, tied into the future terraforming of Mars. [4]

2. Protection against Environmental Hazards on Mars

There are four basic objectives in environmental law proposed for Mars: the protection of aquatic ecology; the protection of specific subsurface habitats where some organic life may live; the maintenance of clean water for use by interplanetary space mission teams, and the protection of water resources and water samples that will be shipped from Mars to Earth for research and study by governments and multi-national corporations.[5]  Simply put, the  biosphere of Earth also extends to Mars and this larger biosphere needs to be preserved!

On the basis of new geological data the directive for formulating a Martian Environmental Law (MEL) under space law, policy makers from the U.N., government, regulatory agencies, the water industry, and aerospace specialists on planetary environment should work together to provide an integrated framework for the protection of surface water, groundwater, estuaries and remnant areas of the ancient Martian ocean shorelines. This is to encourage cooperation between different exploratory parties or consortiums of the Martian surface by using management based on international policies for the governing, protection and welfare of coastal and oceanic areas as announced at the UN World Summit on Sustainable Development (Johannesburg 2002).

Is it possible to design a version of incentives so that responsible parties could normally be expected to discover the magnitude of the risks, investigate the menu of risk-reducing strategies, make a socially acceptable choice, and act accordingly? Increasingly, court remedies are being relied upon to provide exactly this kind of system of incentives. In cases such as oil spills and contamination of water supplies by toxic emissions, the courts have forced responsible parties not only to pay for clean up of the contaminated sites, but also to compensate those who suffered damage in one form or another from the contamination.  However, we cannot wait until "after the fact" on Mars, but we must implement regulations which are by their very nature ex ante ; they prescribe or prohibit specific activities before they occur. 

3. The Montreal Protocol:
    An Example of Global Environment Law

 In the 1980s global politics and environmental issues collided in the world. British scientists reported in 1985 the thinning of the ozone layer of the Antarctic, and the pressure was on to freeze and/or reduce CFC  (Chlorofluorocarbon) production. By 1987, the international agreement entitled the Montreal Protocol was signed by the United States, the European Community and twenty-three other countries. Nevertheless, there were loopholes in the Protocol which permits India and China to continue to place high concentrations of CFCs into the atmosphere.  Clearly the problems of the world ozone crisis in the 1980s illustrate a good strategy of how many governments of the world worked together in resolving sharp differences on the curtailment of CFC production which was seen as a trigger agent for the destruction of the fragile ozone layer.         

For obvious reasons, European industry—and hence the EU (European Community) –did not welcome the proposal of a quick time table to eliminate all CFC production by the end of the 1990s. Several times the negotiations threatened to break down. Sweden, the United States, and other countries continued to emphasize during the debates that, if only production were controlled, unfair benefits would be conferred on the EU, while CFC-importing nations, especially the developing countries, would be at a disadvantage. Ultimately, the logic and equity of an "adjusted production" formula was compelling, and the opposition to a "production only" formula became implacable. The EU Commission found itself isolated, and a solution in the form of a more comprehensive legal language proved successful. The legal solution crafted at Montreal was practical and impartial, defining an agreed upon schedule to phase out production. The path to litigation resolution in space-related activities may well hinge on constructive language that is "time related" in putting problem solving on a fast track.

Our latest scientific and social comprehension of the cause and spread of CFC destruction, also shows how unaware we are for returning to Mars with the scenarios that could seriously affect the "skin" of the planet. A sense of uncertainty about the way the upper atmosphere is monitored through old standards and old calibrations of pollution needs to be examined with remote sensing techniques to monitor the gases, such as hydrogen, that are present on Mars.

Scientific data presented during the protocol negotiations in Canada was taken very seriously at the time of the Ozone hole treaty which influenced not only environmentalists to forget how uncertain the scientific evidence had been but also politicans. Something tremendous "out there" also had an unsettling effect on many government spokespersons who seemed to not understand the full impact of the Montreal Treaty's capability to set an international precedent for future global environmental laws. One U.S. observer termed the protocol "a major half-step forward," while a British writer uncharitably described it as a masterpiece of fudge and compromise…"full of loopholes" and a "feeble agreement." Fortunately, others like Chris Patten, U.K. environmental secretary, described it as "the model for...future environmental diplomacy." [6]


4. Resources on Mars: Water and Minerals

Increasing economic pressure, in contrast, to understanding  non-renewable resources on planet Earth and Mars forces Earthlings to look principally at exploration for economic developmental.  New advantages of the space program will focus on futuristic exploitation of mineral and energy resources on the nearby planets as part of a great extraterrestrial imperative. But an even more important feature stems from Mars' suspected ocean, that once covered much of the planetary surface and its suspected vast underground water resources which will make water economically feasible to exploit for future mission to Mars.

The high degree of certainty that mineral deposits do exist similar to those on earth is based on close geological similarities that have been observed in over twenty meteorites that have been found on Earth that are believed, based on their chemical composition (iron, etc) to be from Mars.  Microstratigraphy shows detailed carbonate deposits in  meteorites were inserted while the rock was still on the Martian surface, providing possible evidence that liquid water circulated through the surface crust. [7]

Scientists, since 2001, have used Odyssey's gamma ray spectrometer to locate suspected water locations near the signature of buried hydrogen. Neutron data reveals major concentrations of ice-rich layers of water beneath the surface.  In addition, gully formation at the surface by snow melt is thought not to produce mineral deposits, such as salt, as it does on earth, a prediction opposite to what might be expected if the source water was subsurface brines. There is suspicion of mineral occurrences including antimony, chromium, copper, iron, zinc, sulfur and molybdenum on the Martian surface. However, none approaches a grade or size warranting immediate economic interest. Also there are probably very large deposits of coal and sedimentary iron, but because of the high costs of Mars operations that would occur during the first half of the twenty-first century, few conceivable resources, excepting the search for a water reservoir or search for petroleum from microbial life, would have any likelihood for immediate exploitation for economic benefit.

 If ancient bacteria created petroleum, any extraction would be difficult but not impossible in the deep underground regions since technologies have been developed for drilling and recovering  petroleum in the Arctic regions of earth. Drilling ships and platforms, so effective for the usual massive undulating and gargantuan storms in the Arctic, could be used directly on Mars. Thus, fuel and water resources would be exploited far sooner than mineral resources.  Unless there were exotic minerals, there is little potential for the development of Martian reserves before more attractive areas throughout this world are explored, that is for bringing back reserves to Earth.  But Martian water and fuel resources would be first exploited by our own Martian explorers and first colonizers.

The factors of development are complexly interrelated and difficult to assess for the present, let alone the future. From in only a short time from the first human landing or even with simple unmanned probes with special robotic tools, it can become feasible to develop a Martian resource, such as surface water for evenutal human settlements. Other sources of coal or oil shale might be found in the first decades of development, that could be used as an energy resource in the place of geothermal energy, which would greatly change cost factors of industrial development on Mars, so we must immediately force a reconsideration of previous environmental incentives to keep Mars clean.

The political volatility of the resource question, especially the problems of rights of ownership and development, has prompted proposals that range from sharing any found mineral wealth equally among the nations to establishing the planet as a total ecological zone; it is understood that any significant mineral discovery will provide a severe test for the nation-states first on the Martian surface.

 In one definition of "resource development", Mars natural resources can be defined as natural materials or characteristics of significance to humankind. By this broad definition, the term includes not only biological and mineral resources but also the land itself, water, ice, climate, and space for living and working, recreation and storage. "Economic resources" are those that can be used or exported at a cost that is less than their value. Any attempted appraisal must therefore be continually reevaluated in terms of current market values, logistical costs, and technological development.

A rich imagination can also see many possible uses of the Mars poles and their reserves. The polar ice sheets possibly contain as such as 90 percent of the planet's glacial ice—a huge potential supply of fresh water—but any economic value is precluded by delivery costs except for the exo-industrial settlements. Mars ice has been proposed as a long-term, deep-freeze storage site for grain and other foods, but calculations show that such usage is not economic at the early stages of settlement, because of excessive shipping, handling, and investment costs. The Antarctic Treaty rules out military use, however, and the increasing capability of earth-based long-range aircraft rocketry, and satellite surveillance and reentry decreases the possible military importance of Mars.

In the long run, we might find, as Libya did when they exploited their ancient underground water, that there is a limited and meager inventory of accessible water which would be at odds with the volume of fluid needed to shape exo-industrial operations for making Mars user-friendly to the first generation of earthlings. Therefore, space law for the protection of vital environmental resources, especially  water and petroleum, must be the single most important part of framework legislation for all participants.[8]

Management plans will have to be developed, specifying what actions are needed to implement the environmental objectives of maintaining international reciprocity for all sides at each surface and subsurface water site deemed important for human exploration and settlements on Mars. The following planetary considerations can be argued for the following water scenarios:

(1) Because not all bodies of water are used for the same purpose, specific protection zones are to be established within each ancient river basin, subject to more stringent protection according to the uses made of them.

(2) Groundwater should not be polluted at all, so direct discharges into groundwater should be banned, and groundwater should be monitored so that changes in chemical composition can be detected and man-made pollution addressed by new technology.[9]

(3) Member exploratory parties on Mars whether national or international are to be subject to the use of water through laws and 'green taxes' to achieve the goals of the directive, the goal being to prevent the over-extraction or drilling for water, and to encourage more efficient use of water reservoirs, and to ensure that the environmental costs of water use are borne by the user.


 The long-term viewing of Martian resources may soon be possible due to NASA's Spirit and Opportunity probes with a plethora of follow-up missions. In spite of other world-wide problems, such as the threat of nuclear devastation and the gradual one of curbing human population-pressures, the time is right for all thinking humanity to act in an ecologically-minded context. This should range from applying legislation through enlightened maintenance of each local ecosystem, whether natural or artificial, and to care for it in the interplanetary context of what this writer calls, the Joint Earth-Mars Biosphere. Each of the ecosystems comprising the Joint Earth-Mars Biosphere, should become an integral part of our life in unity with Earth's living biota–including Humankind.

In building a society and eventual civilization on Mars, through cooperation among nations, we can only do this by preserving water as the future "life blood" of humanity.  Let us not destroy our chance of building new life upon the remnants of a once global Martian ocean. But let us now begin with introducing protective laws which will protect possible invaluable "surviving micro-organisms" that can give evidence of our evolutionary track in the cosmos, as well as our own future on our sister planet. Immediate space law legislation is, thus, needed for the initial contact with the tread of life on a sister planet and the development of human civilization on Mars in the 21st century. Accountable and courageous leadership in all sectors will be needed to mobilize the necessary effort. If the world community fails to act forcefully in the current decade, the Earth's ability to sustain life in space, including back on mother Earth may be at risk.  


[1] Discussions with Prof. James W. Head, Brown University, at Jet Propulsion Lab, L.A., April 1984.

[2] Mellon, M.T. and Jakowsky, B. (1995) The distribution and behavior of martian ground ice during past and present epochs. Journal Geophysics. Research. 100, 11781-11799.

[3] J. Thompson, et al. (2003) Martian Gullies and the Stability of Water in the Martian Environment. Lunar and Planetary Science XXXIV, 1035. Boynton, W.V. (2002) Science 297, 81.      

[4]McKay, Christopher, Kastings, J. and Toon, O. "Making Mars Habitable," Nature 352 (1991) 489-496.

[5]Benedick, Richard E.. (1991) Ozone Diplomacy, New Directions in Safeguarding the Planet. Cambridge, MA: Harvard, p 198.

[6] French, Hilary et al. (1992) After the Earth Summit. Future of Environmental Governance. Washington D.C.: Worldwatch Institute.

[7] The Ecological Integrity section of The Earth Charter Initiative gives an outstanding model for a global ethic and for adapting human life to work in a vast evolving universe with new planetary habitats. See www.earthcharter.org.

[8]Levin, G. (1997) "Viking Label Release Experiment" (Water and Life on Mars Reconsidered).  Proc. Internat. Society for Opt. Imaging. Proc. Series, 3111, pp. 146-161.

[9] Discussions with Walter Brown, former head of Radar Team at JPL, August 2002..


Update on Mars Reconnaissance Orbiter

by Dr. J.J. Hurtak, Ph.D., Ph.D.

The successful rendevous of the MRO (Mars Reconnaissance Orbitor) with the planet Mars on March 10th (2006) will allow sophisticated instruments to look for 'waterways' and document the dendritic networks of flow channels both on the Martian surface and below its sands. A platform of High Resolution (HiRISE), Context (CTX) and Mars Color Imagery (MARCI) cameras will open a new page for the study of the search for water and other triggering mechanisms of life using remote sensing technology hovering some 300-500 kilometers over the Martian surface, but penetrating 1 kilometer under the surface, where underground water reservoirs could be discovered.

The MRO cruised through interplanetary space for 7 and ½ months before reaching Mars. During the voyage, testing and calibrations continued with some of the most elaborate scientific instruments and experiments ever brought into space.  Four trajectory correction maneuvers were planned in case there was a need to correct the trajectory for proper orbital insertion with Mars. Only three trajectory correction maneuvers were needed by the MRO, with a fourth correction deemed unnecessary, in order to make a perfect orbital connection with the planet.  

In addition to high-resolution instruments that will help space engineers to evaluate possible landing sites for future missions, the MRO's communications capabilities will provide a critical transmission relay for the surface missions undertaken by future robotic and human mission teams.  MRO will even be able to provide critical navigation data to future probes during their planned landing schedules.  More importantly, the Orbiter may be able to uncover the reasons behind the failure of past Mars missions (the Russian Phobos 2, NASA's Mars Polar Lander, and the British Beagle lander) and discover exciting findings of water and other signs of primitive life, past or present, on our sister planet.

The 2006 mapping of the smallest details on the Martian surface (down to the resolution level of 3.3 feet - 1 meter diameter) highlights the importance of the new mission which will lay the groundwork for future NASA planned surface missions which will include a lander called Phoenix for 2007, followed by the Mars Science Laboratory, a highly capable rover now being developed for a 2009 launch opportunity.

External Links:

Mars Reconnaissance Orbiter website at JPL 


HiRISE Instrument website


Mars Reconnaissance Orbiter Reception

To explore new scientific ideas, visit Academy For Future Science
and to explore more of their consciousness ideas visit The Keys of Enoch®.


If you have questions regarding orders please call
Toll Free 1-877-872-KEYS Monday-Friday, 10:00-4:00 CST
Copyright © 2003 - 2010 The Academy For Future Science
All rights reserved
Site Last updated 11/10